
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

An Efficient Privacy-Preserving Credit Score System
Based on Noninteractive Zero-Knowledge Proof

Chao Lin , Min Luo , Xinyi Huang , Member, IEEE, Kim-Kwang Raymond Choo , Senior Member, IEEE,
and Debiao He , Member, IEEE

Abstract—Credit system is generally associated with the banking
and financial institutions, although it has far reaching implications
for residents of countries, such as U.S., particularly for those with a
poor credit history. Specifically, a credit score computation (CSC)
quantifies an individual’s credit value or credit risk, which is used
by banking and financial institutions, as well as other entities (e.g.,
during purchasing of insurance policies and application of rental
properties), to facilitate their decision-making (e.g., whether to
approve the insurance policy purchase or the level of premium).
Although a number of CSC models have been proposed in the
literature for supporting different application scenarios, privacy
protection of CSC is rarely considered despite the potential for
leakage of user private information (e.g., registration, hobbies,
credit, relationships, and inquiry). Such information can then be
abused for other nefarious activities, such as identity theft and
credit card fraud. Thus, in this article, we first analyze the privacy
strength of existing CSC models, prior to presenting the formal
definition of a privacy-preserving CSC system alongside its security
requirements. Then, we propose a concrete construction based
on Paillier encryption with three proposed noninteractive zero-
knowledge schemes. To demonstrate feasibility of our proposal, we
evaluate both its security and performance.

Index Terms—Credit score computation (CSC), noninteractive
zero knowledge (NIZK), Paillier encryption, privacy preserving.

Manuscript received August 25, 2020; revised November 16, 2020; accepted
December 12, 2020. This work was supported in part by the National Natural
Science Foundation of China under Grant 62032005, Grant 61822202, Grant
61932016, Grant 61972294, and Grant 61872192; in part by the National Key
Research and Development Program of Chiangdong Key Laboratory of Data
Security and Privacy Protection under Grant 2017B030301004; in part by the
Special Project on Science and Technology Program of Hubei Province under
Grant 2020AEA013; in part by the Science Foundation of Fujian Provincial
Science and Technology Agency under Grant 2020J02016; in part by the
Natural Science Foundation of Hubei Province under Grant 2020CFA052; and
in part by the Wuhan Municipal Science and Technology Project under Grant
2020010601012187. The work of Kim-Kwang Raymond Choo was supported
in part by the Cloud Technology Endowed Professorship and in part by the Na-
tional Science Foundation CREST under Grant HRD-1736209. (Corresponding
author: Min Luo.)

Chao Lin is with the College of Mathematics and Informatics and the Fu-
jian Provincial Key Laboratory of Network Security and Cryptology, Fujian
Normal University, Fuzhou 350117, China, and also with the School of Cyber
Science and Engineering, Wuhan University, Wuhan 430072, China (e-mail:
linchao91@qq.com).

Min Luo and Debiao He are with the School of Cyber Science and Engi-
neering, Wuhan University, Wuhan 430072, China (e-mail: mluo@whu.edu.cn;
hedebiao@163.com).

Xinyi Huang is with the College of Mathematics and Informatics and the
Fujian Provincial Key Laboratory of Network Security and Cryptology, Fujian
Normal University, Fuzhou 350117, China (e-mail: xyhuang81@gmail.com).

Kim-Kwang Raymond Choo is with the Department of Information Systems
and Cyber Security and the Department of Electrical and Computer Engineering,
The University of Texas at San Antonio, San Antonio, TX 78249 USA (e-mail:
raymond.choo@fulbrightmail.org).

Digital Object Identifier 10.1109/JSYST.2020.3045076

I. INTRODUCTION

THE credit system is a platform that provides some form of
credit evaluation for both individuals and nonindividual en-

tities (e.g., organizations), which determines the “financial trust-
worthiness” of the individual and/or nonindividual entity [1],
[2]. For instance, in the U.S., credit score is widely used in a
broad range of applications, for example to determine whether an
individual’s application for, say a credit card, home/automobile
loan, etc., will be approved or an individual has to pay a higher
insurance premium or higher interest rate (due to low credit
score).

As shown in Fig. 1, a credit system generally comprises three
types of participants (i.e., users, credit bureaus, and creditors).
The user is a key part of the credit system, whose credit and loan
activities (new account creation, account balance/credit card
utilization, credit inquiries, and payment history) are reported
to the credit bureaus. The latter is responsible for collecting,
recording, and distributing relevant information (collectively
referred to as “credit data”) about the user’s credit activities [3].

Such credit data are then requested by the creditors to compute
the user’s credit score, which is then used to inform some
decision-making. In other words, the credit score represents
the credit value/risk/health of an individual or entity, which is
a reference value for trust assessment [4]. The score is gen-
erated by analyzing the user’s credit data using an algorithm
(i.e., risk model), a process known as credit score computation
(CSC). Different models consider different factors and weights
to compute the final credit score. For example, FICO scores are
calculated based on the user’s payment history (35%), amounts
owed (30%), length of credit history (15%), new credit (10%),
and credit mix (10%).1

There are different risk models in the literature, such as least
squares support vector machines ensemble models for credit
scoring [5], a measure of creditworthiness for sound financial
decision-making [6], a partial credit model [7], and a fuzzy
logistic regression based credit scoring model [8]. Using these
models, creditors can take as input the credit data obtained from
the bureaus and quickly obtain a credit score. However, these
models do not consider the privacy protection of user credit data
and their corresponding weights. That is, credit data in existing
risk models are obtained directly by the creditors and the weights

1https://www.myfico.com/credit-education/whats-in-your-credit-score/ last
accessed December 11, 2018.

1937-9234 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:11:27 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0101-8531
https://orcid.org/0000-0002-1819-9332
https://orcid.org/0000-0003-0070-1707
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0002-2446-7436
mailto:linchao91@qq.com
mailto:mluo@whu.edu.cn
mailto:hedebiao@163.com
mailto:xyhuang81@gmail.com
mailto:raymond.choo@fulbrightmail.org
https://www.myfico.com/credit-education/whats-in-your-credit-score/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

Fig. 1. General architecture of a credit system.

in the model are all publicly known. This is a limiting factor in
establishing a diversified and multilevel credit system.

User credit data can be mined for commercial/financial gains,
for example by reselling such information to marketers and
other business entities, or even cybercriminals. The data can
then be mined to profile users (e.g., user online and shopping
behaviors in order to provide targeted advertising), facilitate
cybercriminal activities, such as identity theft, or identify in-
dividuals to facilitate illegal tracking and surveillance (e.g., by
nation states) [9]–[11]. Clearly, this is a topic of concern to
most users. Also, depending on the application context, making
weights used in the computation of the scores publicly known
can also be abused by individuals or entities to game the system,
for example to take a particular course of actions to enhance the
credit score.

To protect the privacy of weights and credit data, the first
thought is using a secure two-party computation [12], [13].
It enables creditor and bureaus to evaluate a function (i.e.,
CSC formula) cooperatively without revealing to either party
anything (e.g., weights and credit data) beyond the final credit
score. For example, a simple function of computation based
on weight computing is f(k1, . . . , kt,m1, . . . ,mt) = Σt

i=1(ki ·
mi), where ki and mi are weight and credit data, respectively.
However, the existing two-party computation solutions, such
as [14]–[16], generally do not consider the property of verifica-
tion, meaning that a curious creditor (or bureaus) may provide
fake weights (resp. credit data) to obtain each other’s private
information. Worse still, the creditor may lie about the final
credit score to the bureaus or user. Thus, specific zero-knowledge
proofs should be designed to further enhance the privacy of credit
data and weights.

In this article, inspired by Goethals et al. [15], we also
explore the potential of homomorphic encryption (HE) in
the privacy-preserving design of CSC. Here, an HE scheme
(e.g., [17], [18]) allows one to update the message in
ciphertext without the need for decryption. That is, given

encryption E(k1), . . . , E(kt), E(m1), . . . , E(mt) of messages
k1, . . . , kt,m1, . . . ,mt, one can efficiently combine the cipher-
text of f(k1, . . . , kt,m1, . . . ,mt), where f(·) is an efficiently
computable function (mainly related to addition or multiplica-
tion operation in this article).

As mentioned earlier, a zero-knowledge proof tool [19]–[21]
is required to achieve a privacy-enhancing CSC. Specifically,
we need to prove three statements without revealing extra in-
formation, besides determining the validity of these statements.
The first one is provided by creditor to state that ciphertexts
are really corresponding to its weights and these weights are
all in reasonable range, the second is for bureaus to prove that
computed ciphertext is correctly embedded with suitable credit
data, and the final is for creditor to prove that the obtained
credit score is consistent with the ultimate ciphertext. Here,
the reasonable range is to prevent creditor and bureaus from
obtaining the other party’s private information (i.e., weights or
credit data) via providing fake information.

In a typical real-world application, a noninteractive zero-
knowledge (NIZK) proof (e.g., [22], [23]) tool is more practical,
since we can avoid interactions and this reduces the communi-
cation cost. Thus, in this article, we first find an applicable HE
scheme (i.e., Paillier encryption scheme [24], [25] with more
efficient decryption algorithm) and then propose three NIZK
schemes to support the design of a privacy-preserving CSC
(PCSC) system.

In this article, we model a PCSC system designed to support
the credit system. Unlike prior works that consider the design
of risk models, we focus on its privacy protection instead.
Specifically, our main contributions are summarized as follows.

1) We propose the first formal description of a PCSC system
alongside its security goals (i.e., weight confidentiality
and credit confidentiality). This definition can be used in
CSC, as well as other computations, such as digital asset
settlement.

2) We introduce a concrete construction of PCSC, where the
CSC is based on the weight. In the construction, we use
Paillier encryption to hide the credit data and weights, and
design three NIZK schemes to prove the validity of three
statements mentioned earlier.

Having introduced our key contributions above, we will now
explain the layout of this article. Related preliminaries are
presented in Section II. In Section III, we present the formal
description of a PCSC system with its security goals, prior to
presenting the concrete construction with security analysis in
Section IV. In Section V, we evaluate the performance of our
proposal. Finally, we conclude this article in Section VI.

II. PRELIMINARIES

In this section, we present the notations, system model of
PCSC, and relevant cryptographic primitives.

The notation λ denotes a security parameter, {Ai}ti=1 denotes
the set {A1, . . . , At}, and y ← A(x) denotes the invoking of
algorithm A using x as an input and receiving y as the output.
We let |N | denote the length of an integer N , and also denote

X
c≈ Y as the two distribution ensembles X and Y , which

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:11:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIN et al.: EFFICIENT PRIVACY-PRESERVING CREDIT SCORE SYSTEM BASED ON NIZK PROOF 3

Fig. 2. System model of PCSC systems.

are computationally indistinguishable. A negligible function
is denoted as negl(λ), which satisfies that ∀m > 0,∃n0, s.t.,
∀λ > n0 : negl(λ) < 1/λm. A PPT algorithm is marked as
an algorithm with probabilistic polynomial time. The algorithm
returns 1 for acceptance and returns 0 for rejection.

A. System Model

We will now briefly introduce the system model, which com-
prises trusted authority, user, bureaus, and creditor—see also
Fig. 2. They communicate with each other through a secure
channel that could be established, say using the secure socket
layer protocol. We assume trusted authority, bureaus, and cred-
itor have sufficient computing resources to execute the CSC.

1) Trusted authority: This component is a trusted third-party
responsible for the generation of system parameters (e.g.,
cryptographic parameters, such as the common reference
string (CRS) for the user, bureaus, and creditor to gener-
ate/verify NIZK proofs).

2) User: This component is the main part of providing credit
data via participating in different credit and loan activities.
Actually, the user’s credit data (including new account
creation, account balance/credit card utilization, credit
inquiries, payment history, and so forth) are collected by
different trusted parties, such as bank, securities company,
and asset management company. In our model, we assume
that the user’s credit data are trusted according to the credit
endorsement of these trusted parties.

3) Bureaus: This component is responsible for securely col-
lecting, recording, and distributing the user’s credit data,
as well as cooperating with the creditor to compute the
user’s credit score. According to general data protection
regulation (EU) 2016/679,2 business processes cannot
make user’s data available publicly without explicit, in-
formed consent. Thus, it is reasonable to assume that the
bureaus will strictly execute the procedure of PCSC, and
not directly transmits credit data to the creditor. However,

2https://eur-lex.europa.eu/eli/reg/2016/679/oj

it is also curious and, hence, maybe provide fake credit
data for revealing weights of creditor.

4) Creditor: This component owns its secret weights for
computing the user’s credit score via interacting with the
bureaus. Here, we assume that it is malicious, in other
words, it may lie about the final credit core for saving
computation costs or use malicious weights for disclosing
credit data of bureaus.

On basic of the aforementioned system model, for protecting
the privacy of credit data and weight, the bureaus and creditor
are expected to collaborate with each other to compute the final
credit score, but without revealing the detail of their data (i.e.,
credit data and weight). Thus, the design of PCSC system not
only requires that the credit data and weight are dealt with under
the ciphertext status, but also provides the verifiability of these
data. The latter refers to that the credit data (or weights) are not
those unreasonable values, such as (1, 0, 0, . . . , 0), otherwise
they will completely reveal the weights (resp., credit data).
Accordingly, the bureaus and creditor have to prove their credit
data and weights are in the range [1,L), respectively, where there
exists a u, l ∈ N such that L = ul.

B. Cryptographic Primitives

1) Pairing: In this article, our construction is based on cryp-
tographic pairings. Thus, for sake of description, we denote
BPG(λ) as a pairing generator that takes as input a secu-
rity parameter λ and returns public parameters of bilinear
group BPP = (p,G1,G2,GT , e, G1, G2) with the following
notations.

1) p is a λ-bit prime number.
2) G1 and G2 are additive cyclic groups and GT is a multi-

plicative one, all of which are with order p.G1 andG2 are
generators of G1 and G2, respectively.

3) e : G1 ×G2 → GT is a nondegenerate bilinear map, and
e(G1, G2) is one generator of GT .

4) ψ : G2 → G1 is a computable isomorphism, that is,G1 =
ψ(G2).

5) ∀x, y ∈ Zp, e(xG1, yG2) = e(G1, G2)
xy .

6) ∀G ∈ G1, H ∈ G2, e(G,H) can be efficiently computed.
2) NIZK Argument and Σ-Protocols: In a noninteractive ar-

gument system, there is only a single message sent by a prover
P to a verifier V , which is used to prove a relationR. That is, P
generates a proof π using an instance/witness pair (x,w), and
sends it to V . Then, V verifies (x, π) and returns 1 if valid, or 0
otherwise. A (P, V) is called a noninteractive argument system
forR, if it has the properties of completeness and soundness de-
fined below. Moreover, if a noninteractive argument system has
also zero-knowledge feature (i.e., leaking no extra information
to the verifier, besides the validity of the statement), it will be
an NIZK argument system.

Concretely, a triple of PPT algorithms (G, P, V) in the CRS
model is called an NIZK argument system for language LR, if
it has the following properties.

1) Completeness: For each crs← G(λ) and (x,w) ∈ R,
where the crs is generated by a trusted party, there is

Pr[π ← P(crs, x, w) : V(crs, x, π) = 1] = 1− negl(λ).

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:11:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

2) Soundness: For all nonuniform PPT prover P∗, there is

Pr

[
crs← G(λ), (x, π)← P∗(crs) :
x /∈ LR ∧ V(crs, x, π) = 1

]
= negl(λ).

3) Zero knowledge: There exists a PPT simulator S =
(S1, S2), such that for all stateful nonuniform PPT ad-
versaries A = (A1,A2), there is∣∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎣ crs← G(λ)
(x,w)← A1(crs)
π ← P(crs, x, w)

:
(x,w) ∈ R∧
A2(crs, x, π) = 1

⎤
⎦

−Pr

⎡
⎣ (crs, td)← S1(λ)
(x,w)← A1(crs)
π ← S2(crs, x, td)

:
(x,w) ∈ R∧
A2(crs, x, π) = 1

⎤
⎦

∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ).

For perfect zero knowledge, the definition is changed so
that the aforementioned probability equals 0.

A Σ-protocol is three-move interactive zero-knowledge argu-
ment systems that allow a prover P to convince aPPT verifier V
about the validity of a statement (x,w) ∈ R. After the interactive
conversation, a form (a, c, z) will be generated, where a and z
are computed by P according to the randomly chosen challenge c
from V. Here, aΣ-protocol refers to three slightly different prop-
erties, namely, completeness (i.e., (x, a, c, z) will be accepted if
there exist some efficient function φ such that φ(x, a, c, z) = 1),
special soundness (i.e., the witness w can be efficiently re-
covered using two accepting (x, a, c, z) and (x, a, c,′ z′) where
c �= c′), and special honest-verifier zero knowledge (i.e., there
exists a simulator S that can output an accepting (x, a, c, z)
according to the given c, and the output is indistinguishable
from a real interaction between P and V).

Note that aΣ-protocol can be turned into a NIZK argument via
Fiat–Shamir heuristic [26] and a secure hash function H. That
is, P first computes a and uses the H to get the challenge c =
H(x, a), then it executes the following Σ-protocol to compute
z and sends (x, a, c, z) to V . One can prove the soundness and
zero knowledge of the new protocol in the random oracle (RO)
mode [27] by replacingH(x, a) with an RO [26].

3) Boneh–Boyen Signature Scheme: Our constructed NIZK
proofs will involve the Boneh–Boyen signature [28], which has
been proven secure against a weak chosen-message attack. It
consists of the following PPT algorithms.

1) BKG(λ): This algorithm randomly chooses x ∈ Zp to
computeY = xG2. It finally returns the public/private key
pair (pks, sks), where pks = Y and sks = x.

2) BSign(sks,m): This algorithm computes S = (x+
m)−1G1 using its private key sks = x, and returns the
message/signature pair (m,S).

3) BVerify(pks,m, S): This algorithm uses the public key

pks = Y to check that e(S, Y +mG2)
?
= e(G1, G2). It

finally returns 1 if the equation holds on; otherwise, it
returns 0.

4) Paillier Encryption Scheme: The HE adopted in our PCSC
is Paillier encryption [24], [25], which is proven to be secure in
the IND-CPA model. It comprises following PPT algorithms
(i.e., PKG, PEnc, PDec, Extractor).

1) PKG(λ): This algorithm randomly chooses an admissible
RSA modulus n = p · q and sets d = lcm(p− 1, q − 1),
then returns the public/private key pair (pke, ske), where
pke = n and ske = d.

2) PEnc(pke,m): This algorithm randomly chooses r ← Z∗n
and computes c = (1 + n)m · rn mod n2, and returns c as
the ciphertext of m.

3) PDec(ske, c): This algorithm computes m = L(cd

mod n2) · μ mod n, where μ = [L(1 + n)d mod n2)]−1

and L(·) is a function defined as u ∈ Sn, L(u) = (u−
1)/n, for Sn = {u < n2|u ≡ 1 mod n}.

4) PExt(ske = d, pke = n,m, c): This algorithm first com-
putes s = c · (1 + n)−m mod n2, s′ = s mod n, and then
invokes extended Euclidean algorithm to obtain (−a, b)
such that −ad+ bn = 1. Finally, it returns the random-
ness in the ciphertext, that is, r = (s′)

ad+1
n .

The Paillier encryption scheme satisfies the ho-
momorphic addition property of plaintexts, that is,
PDec(ske,PEnc(pke,m1) · PEnc(pke,m2)) = m1 +m2.
This also implies the property of homomorphic scalar
multiplication PDec(ske, (PEnc(pke,m1))

m2) = m1 ·m2.

III. PROPOSED PCSC SYSTEM

In this section, we describe the proposed PCSC system and
its security goals. For simplicity, we consider a server acts as
the creditor where it owns the private parameters (i.e., weights)
and the client owns the credit data. They execute the procedure
of computing a credit score. Let f(k1, . . . , kt,m1, . . . ,mt) be
the function of computing a credit score, where {ki}ti=1 is the
private parameter owned by the server, {mi}ti=1 is the credit data
owned by the client, and t is the number of credit data items.

In a PCSC system, there are three NIZK arguments and a HE
scheme, that is, proof of initial weight (PIW) (to prove knowing
weights in the ciphertexts and they are in reasonable range),
proof of embedded data (PED) (to prove a ciphertext is correctly
embedded with the client’s credit data and all the credit data are
in reasonable range), and proof of final score (PFC) (to prove
the final score to be consistent with the final ciphertext). Note
that the reasonable range is denotes as [1,L), where there exists
a u, l ∈ N such that L = ul.

1) PP ← Setup(λ): This algorithm is invoked by a trusted
party to generate a list of system public parameters. It takes
as input a security parameter λ, and returns system public
parameters PP .

2) (pke, ske, x0, π0)← ServerInital(PP, {ki}ti=1): This
algorithm is invoked by the server to generate the cipher-
text of own private weights with a PIW proof. It takes as
input PP (system public parameters) and {ki}ti=1 (the
server’s private weights), it will abort if the input weights
are unreasonable (i.e., ∃ki /∈ [1,L) for some i ∈ [1, t]).
Otherwise, it generates (pke, ske) (a public/private key
pair in the HE system) and the ciphertext {ci}ti=1 of
weights. It also generates an instance x0 = (c1, . . . , ct)
and the corresponding witness w0 = (m1, . . . ,mt), then
produces a PIW proof π0 = P0(PP, x0, w0). Finally, it
returns (pke, ske, x0, π0).

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:11:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIN et al.: EFFICIENT PRIVACY-PRESERVING CREDIT SCORE SYSTEM BASED ON NIZK PROOF 5

3) (x1, π1)← DataEmbed(PP, {mi}ti=1, x0, π0): This
algorithm is invoked by the client to embed their credit
data into the ciphertext of private parameters with a PED
proof. It takes as input PP (system public parameters),
{mi}ti=1 (client’s credit data), (x0 = {ci}ti=1, π0) (a PIW
instance and proof), and pk (server’s public key). It will
abort if the range proof π0 is invalid or the input credit data
are unreasonable (i.e., ∃mi /∈ [1,L) for some i ∈ [1, t]);
otherwise, it returns a PED proof (x1, π1), where x1 =
({ci}ti=1, y, pke) (here, y is the final embedded cipher-
text), π1 = P1(x1, w1), and w1 = (m1, . . . ,mt).

4) (x2, π2)← ScoreExtract(PP, ske, x1, π1): This algo-
rithm is invoked by the server to decrypt the final credit
score and generate an NIZK proof to prove this decryption.
It takes as input PP (system public parameters), ske
(its secret key), and (x1 = ({ci}ti=1, y, pk), π1) (a PED
instance and proof). It will abort ifπ1 is invalid; otherwise,
it returns a PFC proof (x2, π2), where x2 = (m, y, pk)
(here, m is the final credit score), π2 = P2(x2, w2), and
w2 = ske.

5) {0, 1} ← Verify(PP, x2, π2): This algorithm is invoked
by the client to verify the correctness of its credit score. It
takes as input PP (system public parameters) and (x2 =
(m, y, pke), π2) (a PFC instance and proof), and returns 1
or 0 to show that the credit score is correct or not.

Next, we describe the security goals that a PCSC system
should satisfy, including weight confidentiality and credit confi-
dentiality.

1) Weight Confidentiality: This property guarantees that the
procedure of PCSC will not reveal any privacy information of
weights to the malicious client. That is, no bounded adversary
A can distinguish between two procedures of computing credit
score, where the private weights are assigned by A.

Definition 1: A PCSC system Π= (Setup, ServerInital,
DataEmbed, ScoreExtract, Verify) satisfies weight confiden-
tiality if no PPT adversary A can distinguish the following
experiments with a nonnegligible probability:

EXPb
wc(Π,A, λ)

PP ← Setup(λ);Lk ← ∅;Lm ← ∅

(pk, sk, x0 = ({ci}ti=1), π0)← AServerInital(PP,{ki}ti=1)

(x1 = ({ci}ti=1, y, pke), π1)

← ADataEmbed(PP,{mi}ti=1,x0,π0,pke)

Lk ← Lk ∪ {{ki}ti=1};Lm ← Lm ∪ {{mi}ti=1}

(x2 = (m, y, pke), π2)← AScoreExtract(ske,x1,π1)

({k0i }ti=1, {k1i }ti=1)← A(Lk)

(pk∗e, sk
∗
e, x

b
0 = ({cbi}ti=1), π

b
0)← ServerInital(PP, {kbi }ti=1)

{{m∗i}ti=1} � Lm; (x∗1 = ({Cb
i }ti=1, y

b, pk∗e), π
∗
1)←

DataEmbed(PP, {m∗i}ti=1, x
b
0, π

b
0, pk

∗
e)

(x∗2, π
∗
2)← ScoreExtract(PP, sk∗e, x

∗
1, π

∗
1)

b′ ← A(pk, xb0, πb
0, x

∗
1, π

∗
1, x

∗
2, π

∗
2).

That is

|Pr[EXP0
wc(Π,A, λ) = 1]− Pr[EXP1

wc(Π,A, λ) = 1]|
≤ negl(λ).

2) Credit Confidentiality: This property is similar to weight
confidentiality, which prevents credit data in the procedure of
PCSC from being revealed. It requires that no bounded adversary
B can distinguish two procedures of computing credit score,
where the credit data are assigned by B.

Definition 2: A PCSC system Π= (Setup, ServerInital,
DataEmbed, ScoreExtract, Verify) satisfies credit confiden-
tiality if no PPT adversary B can distinguish the following
experiments with a nonnegligible probability:

EXPb
cc(Π,B, λ)

PP ← Setup(λ);Lk ← ∅;Lm ← ∅

(pk, sk, x0 = ({ci}ti=1), π0)← BServerInital(PP,{ki}ti=1)

(x1 = ({ci}ti=1, y, pk), π1)← BDataEmbed(PP,{mi}ti=1,x0,π0,pk)

Lk ← Lk ∪ {{ki}ti=1};Lm ← Lm ∪ {{mi}ti=1}

(x2 = (m, y, pk), π2)← BScoreExtract(sk,x1,π1)

{{k∗i}ti=1} � Lk

(pk, sk, x∗0 = ({c∗i}ti=1), π
∗
0)← ServerInital(PP, {k∗i}ti=1)

({m0
i }ti=1, {m1

i }ti=1)← B(Lm);

(xb1 = ({c∗i}ti=1, y
b, pk), πb

1)←

DataEmbed(PP, {mb
i}ti=1, x

∗
0, π

∗
0, pk)

(xb2, π
b
2)← ScoreExtract(PP, sk, xb1, π

b
1)

b′ ← B(pk, x∗0, π∗0, xb1, πb
1, x

b
2, π

b
2).

That is

|Pr[EXP0
cc(Π,B, λ) = 1]− Pr[EXP1

cc(Π,B, λ) = 1]|
≤ negl(λ).

IV. OUR CONSTRUCTION

In this section, we propose a concrete construction of PCSC,
where the CSC is based on a weight computing, namely, the goal
function isf(k1, . . . , kt,m1, . . . ,mt) = Σt

i=1(ki ·mi). Specif-
ically, the proposed construction is based on Paillier encryption
scheme and three designed NIZK schemes based on Camenisch
et al.’s range proofs [29] (i.e., PIW, PED, and PFC). Prior to
presenting the construction of our PCSC, we first introduce
the design of PIW, PED, and PFC. It is worth noted that other
HE schemes and range proof protocols can also be adopted in
our PCSC system. Our choice of Paillier encryption scheme
is due to its more efficient decryption than other HE schemes.
Correspondingly, Camenisch et al.’s range proof protocol can be
conveniently integrated with Σ protocols for supporting proof
of Paillier ciphertexts.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:11:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

A. Design of NIZKs

The PIW is designed for proving the statement {(x0 =
(c1, . . . , ct), w0 = (k1, . . . , kt)) : ci = PEnc(pke, ki) ∧ ki ∈
[1,L)}, the PED is for {(x1 = (c1, . . . , ct, y, pke), w1 =
(m1, . . . ,mt)) : y = Πt

i=1(c
mi
i) ∧mi ∈ [1,L)}, and the PFC

is for {(x2 = (m, y, pke), w2 = ske) : y = PEnc(pke,m)},
where c1, . . . , ct are Paillier ciphertexts and (pke, ske) is
the public/private key pair in Paillier encryption system (i.e.,
pke = n, ske = d). In this article, all of them are constructed
by applying Fiat–Shamir heuristic and a secure hash functionH
to a Σ-protocol, which can achieve perfect zero knowledge in
the standard model, though the soundness of our constructions
is proved in the RO model.

Notably, in PIW and PED, we also require proving the range
of ki and mi, thus we utilize the range proof proposed in [29].
That is, to realize the range proof of ki ∈ [1, ul) ∀i ∈ [1, t]
(or mi ∈ [1, ul)), we need to prove ki ∈ [0, ul) and ki − 1 ∈
[0, ul) (resp., mi ∈ [0, ul) and mi − 1 ∈ [0, ul)). Specifically,
we write these weights (resp., credit data) in u-ary notation
ki = Σl−1

j=0(ki,j · uj) (resp., mi = Σl−1
j=0(mi,j · uj)) and show

that each coefficient ki,j (resp., mi,j) is in the range [0, u).
1) Proof of Initial Weight: The designed PIW consists of

following three algorithms (i.e., PIW-Gen, PIW-GenProof,
and PIW-VerProof). Here, we adopt an RO H that can be
instantiated by a secure hash function mapping any string into a
l-bit one, where 2l is smaller than any of the prime factors of n
(the public key in the Paillier encryption scheme).

1) PIW-Gen: This algorithm is invoked by a trusted
party to generate a CRS and related private key. It
takes as input a secure parameter λ, and invokes
BPG and BKG to obtain (p,G1,G2,GT , e, G1, G2)
and (pks = xG2, sks = x), respectively. Then, it in-
vokes BSign to sign each element i ∈ [0, u) and
obtains Si = (x+ i)−1G1. Finally, it returns crs0 =
(p,G1,G2,GT , e, G1, G2, pks, {Si}l−1i=0,H) and a private
key sks.

2) PIW-GenProof: This algorithm takes as input crs0, x0 =

(n, c1, . . . , ct) (where ci = (1 + n)Σ
l−1
j=0(ki,ju

j)rni mod
n2), w0 = (k1, . . . , kt) (where ki = Σl−1

j=0 (ki,ju
j)). For

all i ∈ [1, t], j ∈ [0, l), it first randomly chooses vi,j ∈ Zp

to computeVi,j = vi,j Ski,j
. Then, it computesnp = n ∗ p

and randomly chooses αi,j , βi,j ∈ Znp
, γi ∈ Zn

to compute ai,j = e(Vi,j , G2)
−αi,j · e(G1, G2)

βi,j ,

χi = (1 + n)Σ
l−1
j=0(αi,ju

j) · γni mod n2, χ′i =

(1 + n)−1 · (1 + n)Σ
l−1
j=0(αi,ju

j) · γni mod n2, h0 =
H(x0||V1,0|| . . . ||Vt,l−1||a1,0|| . . . ||at,l−1||χ1|| . . . ||χt||
χ′1|| . . . ||χ′t). Next, it computes zki,j

= αi,j − ki,j · h0
mod np, zvi,j

= βi,j − vi,j · h0 mod np, zri = γi · r−h0
i

mod n. Finally, it returns x0 = (n, c1, . . . , ct), π0 = (h0,
Vi,j , ai,j ,χi,χi,

′ zki,j
, zvi,j

, zri) ∀i ∈ [1, t] ∀j ∈ [0, l).
3) PIW-VerProof: This algorithm takes as input

(crs0, x0, π0), and returns 1 or 0 to show this proof
valid or not. It first chooses x0 = (n, c1, . . . , ct),
π0 = (h0, Vi,j , ai,j , χi, χi,

′ zki,j
, zvi,j

, zri)
(where ∀i ∈ [1, t] ∀j ∈ [0, l)), then computes h′0 =

H(x0||V1,0|| . . . ||Vt,l−1||a1,0|| . . . ||at,l−1||χ1|| . . . ||χt||
χ′1|| . . . ||χ′t). If h′0 �= h0, then it returns 0; oth-

erwise, it verifies χi
?
= c

h′0
i · (1 + n)Σ

l−1
j=0(zki,j

uj) ·
znri mod n2, χ′i

?
= c

h′0
i · (1 + n)−1 · (1 + n)Σ

l−1
j=0(zki,j

uj) ·
znri mod n2 and ai,j

?
= e(Vi,j , y)

h′0 · e(G1, G2)
zvi,j ·

e(Vi,j , G2)
−zki,j . It finally returns 1 if all these equations

hold on, and 0 otherwise.
2) Proof of Embedded Data: To construct a PED for our

PCSC, we also adopt a secure hash function H as mentioned
earlier. The constructed PED is described as the following
algorithms.

1) PED-Gen: This algorithm is consistent to that
in PIW, that is, it takes as input a secure pa-
rameter λ and returns a reference string crs1 =
(p,G1,G2,GT , e, G1, G2, pks, {Si}l−1i=0,H) and a private
key sks.

2) PED-GenProof: This algorithm takes as input crs1,
x1 = (c1, . . . , ct, y, n), w1 = (m1, . . . ,mt) (where
mi = Σl−1

j=1 (mi,ju
j), y = Πt

i=1 cmi
i) and returns a

PED proof π1. For all i ∈ [1, t], j ∈ [0, l), it first
randomly chooses vi,j ∈ Zp to compute Vi,j = vi,j
Smi,j

. Then, it computes np = n ∗ p and randomly
chooses αi,j , βi,j ∈ Zp, to compute ai,j = e(Vi,j ,

G2)
−αi,j · e(G1, G2)

βi,j , χ = Πt
i=1(c

Σl−1
j=0(αi,ju

j)

i) mod

n2, χ′ = Πt
i=1(c

−1
i) ·Πt

i=1 (c
Σl−1

j=0(αi,ju
j)

i) mod n2, h1 =
H(x1||V1,0|| . . . ||Vt,l−1||a1,0|| . . . ||at,l−1||χ||χ′). Next,
it computes zmi,j

= αi,j − mi,j · h1 mod np, zvi,j
=

βi,j − vi,j · h1 mod np. Finally, it returns (x1 =
(c1, . . . , ct, y, n), π1 = (h1, Vi,j , ai,j , χ, χ,

′ zmi,j
,

zvi,j
)) ∀i ∈ [1, t] ∀j ∈ [0, l).

3) PED-VerProof: This algorithm takes as input
(crs1, x1, π1), and returns 1 or 0 to show this
proof is valid or not. It first chooses x1 =
(c1, . . . , ct, y, n), π1 = (h1, Vi,j , ai,j , χ, χ,

′ zmi,j
, zvi,j

)
(where ∀i ∈ [1, t] ∀j ∈ [0, l)), then computes
h′1 = H(x1||V1,0|| . . . ||Vt,l−1||a1,0|| . . . ||at,l−1||χ||χ′).
If h′1 �= h1, then it returns 0; otherwise, it veri-

fies χ
?
= Πt

i=0(c
Σl−1

j=0(zmi,j
uj)

i) · yh′1 mod n2, χ′
?
=

Πt
i=1(c

−1
i) ·Πt

i=0(c
Σl−1

j=0(zmi,j
uj)

i) · yh′1 mod n2 and

ai,j
?
= e(Vi,j , y)

h′1 · e(G1, G2)
zvi,j · e(Vi,j , G2)

−zmi,j .
It finally returns 1 if these equations hold on, and 0
otherwise.

3) Proof of Final Score: To construct a PFC for our PCSC,
we also consider a secure hash functionH as mentioned above in
our design. Here, the PFC consists of following three algorithms
(i.e., PFC-Gen, PFC-Gen, and PFC-Gen).

1) PFC-Gen: This algorithm is invoked by a trusted party to
generate a CRS. It takes input a secure parameter λ and
generates a CRS crs = D , where D is the description of
the aforementioned hash function (i.e.,H).

2) PFC-GenProof: This algorithm takes as input D =
H, x2 = (m, y, n), w2 = d and returns a PFC proof π2.
It first invokes PExt(d, n,m, y) to extract the randomness

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:11:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIN et al.: EFFICIENT PRIVACY-PRESERVING CREDIT SCORE SYSTEM BASED ON NIZK PROOF 7

r in the ciphertext y. Then, it randomly chooses ra ∈ Z∗n,
and computes R = rna mod n2, h2 = H(x2||R) and z =
ra · rh2 mod n. Finally, it returns (x2 = (m, y, n), π2 =
(h2, R, z)).

3) PFC-VerProof: This algorithm takes as input (D =
H, x2, π2) and returns 1 or 0 to show this proof is valid
or not. It first parses (x2, π2) as (x2 = (m, y, n), π2 =
(h2, R, z)) and computes h′2 = H(x2||R). If h′2 �= h2,
it returns 0; otherwise, it verifies the equation zn = R ·
[y/(1 + n)m]h

′
2 mod n2 holds or not. If not, this algorithm

returns 0; otherwise, it returns 1.
Theorem 1: The aforementioned proofs are combined by

Σ protocols and Fiat–Shamir heuristic theorem, and they can
be proven as NIZK arguments (i.e., satisfying properties of
completeness, soundness, and zero knowledge) in the RO model.
These properties can be trivially proved and interested readers
can refer to the work in [20], [29], and [30] for the details.

B. Proposed PCSC

In this section, we will present the construction of our PCSC.
Note that our PCSC can concurrently support a server to compute
multiple clients’ credit scores. For sake of simplicity, here we
only describe a server Alice and a client Bob in the PCSC. The
detail is described as follows upon the aforementioned system
building blocks (the Paillier encryption scheme, PIW, PED, and
PFC).

1) Setup: A trusted party invokes PIW-Gen, PED-Gen, and
PFC-Gen to generate a CRS and private key denoted
as crs = (p,G1,G2,GT , e, G1, G2, pks, {Si}l−1i=0,H) and
sks, respectively. Finally, both Alice and Bob obtain the
CRS crs for the execution of PCSC.

2) ServerInital: Alice first invokes the PKG algo-
rithm to obtain its public/private key pair, that is,
(pke, ske)← PKG(λ), where pke = n, ske = d.
Then, it encrypts its private parameters ({ki}ti=1)
via ci = PEnc(pke, ki) = (1 + n)ki · rni mod n2

for i = 1, . . . , t. Next, it invokes PIW-GenProof
to obtain a PIW proof x0 = (n, c1, . . . , ct), π0 =
(h0, Vi,j , χi, χi,

′ zki,j
, zvi,j

, zri), where ∀i ∈ [1, t] ∀j ∈
[0, l). Finally, it sends the (x0, π0) to Bob.

3) DataEmbed: After receiving (x0, π0), Bob first invokes
PIW-VerProof to check its validation. If not, it aborts;
otherwise, it parses x0 = (n, c1, . . . , ct) and combines
its credit data {mi}ti=1 to compute y = Πt

i=1(c
mi
i)

mod n2. In addition, it invokes PED-GenProof to com-
pute the PED, namely, x1 = (c1, . . . , ct, y, n), π1 = (h1,
Vi,j , χ, χ,′ zmi,j

, zvi,j
), where ∀i ∈ [1, t] ∀j ∈ [0, l).

Finally, it replies (x1, π1) to Alice.
4) ScoreExtract: To obtain the final credit score of Bob, Alice

first verifies the received PED proof from Bob, that is, it in-
vokes PED-VerProof(crs, x1, π1). It aborts if this invoca-
tion returns 0; otherwise, it parses x1 = (c1, . . . , ct, y, n)
and decrypts the ciphertext y to obtain the score m←
PDec(ske, y). Moreover, it uses PFC-GenProof to com-
pute the PFC proof (x2, π2), where x2 = (m, y, n), π2 =
(h2, R, z). Finally, it replies (x2, π2) to Bob.

5) Verify: After receiving the (x2, π2) from Alice, Bob
can verify the correctness of its credit score via PFC-
VerProof(crs, x2, π2). If the returned result is 1, meaning
that the credit score is correct and this algorithm returns
1; otherwise, it returns 0.

Theorem 2: The proposed PCSC system Π= (Setup,
ServerInital, DataEmbed, ScoreExtract, Verify) is secure
(i.e., with weight confidentiality and credit confidentiality).

Proof: To prove the weight confidentiality, we now describe
the following hybrid experiments (EXP0

wc,E1,E2,EXP
1
wc).

1) Experiment: E1. The experiment E1 modifies EXP0
wc

by using the simulator S1 (see Algorithm 1) to produce
the PIW proof. More formally, in the ServerInital, the
challenger invokes PKG to generate a public/private key
pair (n, d) and randomly chooses ciphertext c1, . . . , ct.
Then, the challenger invokes S1(λ) to generate the PIW
proof (x00, π

0
0
′
) instead of invoking PIW-GenProof. The

rest procedure of E1 is the same as that of EXP0
wc. For the

PIW scheme with special honest verifier zero knowledge,
the distribution of the simulated proofs is identical to that
in EXP0

wc, we have

|Pr[EXP0
wc(Π,A, λ) = 1]− Pr[E1(Π,A, λ) = 1]|

≤ negl(λ).

2) Experiment: E2. The experiment E2 modifies E1 during
invoking ServerInital. The challenger simulates an in-
stance x10 as that in EXP1

wc by computing (x10, π
1
0
′
)←

S1(λ). Also, due to the special honest verifier zero knowl-

edge of proposed PIW scheme, we have {x00, π0
0
′} c≈

{x10, π1
0
′}. Hence

|Pr[E1(Π,A, λ) = 1]− Pr[E2(Π,A, λ) = 1]|
≤ negl(λ).

Moreover, it is obvious to see the following relation ac-
cording to the zero-knowledge property:

|Pr[E2(Π,A, λ) = 1]− Pr[EXP1
wc(Π,A, λ) = 1]|

≤ negl(λ).

From the aforementioned discussion, we can sum over the
final probability that represents the adversary A’s advan-
tage in distinguishing the (EXP0

wc,E1,E2,EXP1
wc). That

is

|Pr[EXP0
wc(Π,A, λ) = 1]− Pr[EXP1

wc(Π,A, λ) = 1]|
≤ negl(λ).

Our proposed PCSC also satisfies the goal of credit confiden-
tiality. The proof is similar to that of weight confidentiality (via
analyzing hybrid experiments EXP0

cc,E1,
′ E2,

′ EXP1
cc), but the

modification is on the PED proof but not PIW proof. Specifically,
we replace PED-GenProof withS2 (see Algorithm 2) to gener-
ate the PED proof, and hence construct two experiments E1

′ and
E2
′. The former uses S2 to generate the PED proof (x01, π

0
1
′
),

but the latter (x11, π
1
1
′
). Due to the special honest verifier zero

knowledge of PED scheme, we have the indistinguishability
between EXP0

cc and E1
′, then E1

′ and E2
′, and finally E2

′ and

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:11:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE SYSTEMS JOURNAL

Algorithm 1: Simulator S1.
Input: a security parameter λ

Output: public parameters PP , the proof π0
1: (p,G1,G2,GT , e, G1, G2, pks,OH) = Sim1(λ)3

2: Given an instance x0 = (n, c1, . . . , ct) to be proved.
3: Randomly choose h∗0 ← {0, 1}l (i.e. a l-bit string),

v∗i,j ∈ Zp and z∗ki,j
∈ Zp, z∗vi,j

∈ Zp, z∗ri ∈ Zn.
4: Compute V ∗i,j = v∗i,j Ski,j

, χ∗i =

c
h∗0
i · (1 + n)

Σl−1
j=0(zk∗

i,j
uj) · z∗nri mod n2, χ′∗i =

c
h∗0
i · (1 + n)−1 · (1 + n)

Σl−1
j=0(zk∗

i,j
uj) · z∗nri mod n2

and a∗i,j = e(Vi,j , y)h
∗
0 · e(G1, G2)

zv∗
i,j · e(Vi,j ,

G2)
−zk∗

i,j .
5: Set
OH(V ∗1,0|| . . . ||V ∗t,l−1||a∗1,0|| . . . ||a∗t,l−1||χ∗1|| . . . ||χ∗t ||
χ′∗1 || . . . ||χ′∗t) = h∗0.

6: return π∗1 = (h∗0, V
∗
i,j , χ

∗
i , χ

′∗
i , z

∗
ki,j

, z∗vi,j
, z∗ri)

Algorithm 2: Simulator S2.
Input: a security parameter λ

Output: public parameters PP , the proof π1
1: (p,G1,G2,GT , e, G1, G2, pks,OH) = Sim2(λ)4

2: Given an instance x1 = (c1, . . . , ct, y, n) to be proved.
3: Randomly choose h∗1 ← {0, 1}l (i.e. a l-bit string),

v∗i,j ∈ Zp and z∗mi,j
∈ Zp, z

∗
vi,j
∈ Zp, z

∗
ri
∈ Zn.

4: Compute V ∗i,j = v∗i,jSmi,j
,

χ∗ = Πt
i=0(c

Σl−1
j=0(z

∗
mi,j

uj)

i) · yh∗1 ,

χ′∗ = Πt
i=1(c

−1
i) ·Πt

i=0(c
Σl−1

j=0(z
∗
mi,j

uj)

i) · yh∗1 and
a∗i,j =

e(V ∗i,j , y)
h∗1 · e(G1, G2)

z∗vi,j · e(V ∗i,j , G2)
−z∗mi,j .

5: Set
OH(V ∗1,0|| . . . ||V ∗t,l−1||a∗1,0|| . . . ||a∗t,l−1||χ∗||χ′∗) =
h∗1.

6: return π∗0 = (h∗1, V
∗
i,j , χ

∗, χ′∗, z∗mi,j
, z∗vi,j

)

EXP1
cc against a PPT adversary B. That is

|PrEXP0
cc(Π,B, λ) = 1]− Pr[EXP1

cc(Π,B, λ) = 1]|
≤ negl(λ).

V. PERFORMANCE ANALYSIS

To our best of knowledge, our proposed PCSC is the first
one to deal with the privacy protection of credit score systems.
Thus, to demonstrate its feasibility, we directly analyze the
storage and communication overhead in our proposal, together
with estimating its computation overhead in a proof-of-concept
implementation. Here, we denote t as the number of credit data
items.

3Sim1 is similar to the PIW-Gen except that the hash function is simulated
as an RO.

4Sim2 is similar to the PED-Gen except that the hash function is simulated
as an RO.

Fig. 3. Storage overhead of each participant in our PCSC system.

TABLE I
COMMUNICATION OVERHEAD

Let the system security parameter λ = 80 and, hence, we
adopt the public key of Paillier encryption system |n| = 1024 b
and the Barreto–Naehrig [31] over base field F256 to achieve
this security level. This means that the elements in Zp,Zn, Zn2 ,
Z2l , Znp

, G1, G2, and GT can be represented in 32, 128, 256,
32, 160, 64, 128, and 384 B, respectively, where 2l is smaller
than the prime factor of n. Since we choose the SHA256 to
instantiate our argument, the length of a hash element is 32 B.
The length of each credit data and weight is 30 b, meaning that
their space is [0, 230) (which is enough for the practical credit
data or weight). Note that the aforementioned L = ul is set as
u = 210 and l = 3 in our implementation.

A. Storage

In our system, both the server and the client need to store
the public parameters and signatures (i.e., |Zp|+ 1025|G1|+
2|G2|, about 65 888 B) generated in the Setup phase, together
with the public key of the HE system (about 128 B an element in
Zn). Here, the server has to store an additional secret key (also
128 B in Zn). Moreover, the server and client need to store the
weight and credit data (which are both about 30t b), respectively.
To verify the PED proof, the sever needs to store its generated
ciphertexts (c1, . . . , ct), and the client requires another storage
256 B (i.e., the storage of y) for the verification of PFC proof. In
all, the storage overheads of the server and client are 66144 +
259.75t and 66 272 + 3.75t B, respectively.

For a further intuitive analysis, we also discuss the relationship
between the storage overhead and the number of credit data
items. As shown in Fig. 3, although both the storage overheads of
the server and client are linear to the number of credit data items,

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:11:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIN et al.: EFFICIENT PRIVACY-PRESERVING CREDIT SCORE SYSTEM BASED ON NIZK PROOF 9

TABLE II
TIME COST OF OUR PCSC SYSTEM (ms)

the rate of storage overhead increase of the client is less than that
of the server. Specifically, the storage overhead of the client is
approximately constant (not more than 67 kB) comparing to
that of the server. This result seems not ideal enough from the
view of the sever, however, some real-world applications are
with few terms (e.g., Fair Issaac Corporation is only based on
five factors as mentioned above) and could be supported by our
proposal. In addition, the server in our model generally refers to
some participants with enough resources, including storage and
computation and, hence, can tolerate this storage overhead.

B. Communication

This section discusses the communication overhead for the
operations of our proposed PCSC system. First, in the Setup
phase, the TA needs to share public parameters and signatures
with server and client, which is of length |Zp|+ 1025|G1|+
2|G2| (about 65 888 B). To generate a credit score based on
t items of credit data, the server should produce the cipher-
text of its own weights (i.e., {ci}ti=1) together with a PIW
proof. This is executed in the ServerInital algorithm involving
length of (t+ 1)|Zn|+ 2t|Zn2 |+ |Z2l |+ tl|G1|+ tl|GT |+
2tl|Znp | (about 2944t+ 160 B). In addition, after the client
receives these (x0, π0), it will invoke the DataEmbed algorithm
(i.e., it embeds its credit data {mi}ti=1 into {ci}ti=1 and then
generates a PED proof to reply the server). This transmission
is with the overhead of 2424t+ 160 B, that is, the length of
(y, π1). Note that the sever has stored its ciphertext {ci}ti=1,
and the client does not need to send them again. The additional
communication overhead is caused in ScoreExtract algorithm
(requiring about 416 B that the client replies (m,h2, R, z) to the
server).

The result is summarized in Table I, from which we can clearly
learn the relationship between the communication overhead and
the number of credit data items (i.e., t). That is, both ServerInital
and DataEmbed are with a dramatically linear increase rate, but
the other three Setup, ScoreExtract, and Verify are constant
(i.e., 65 888, 416, and 416 B, respectively). As discussed in
Section V-A, these results are also acceptable in the real-world
applications.

C. Computation

We performed a proof-concept implementation of our PCSC
system to evaluate its computation overhead. The system con-
figuration is the Window system (Windows 7, 64 b) with an
Intel (R) Core (TM) i7-6700 CPU at 3.40 GHz and 8-GB RAM.
Note that in the experimental evaluation, we considered the
number of credit data items from 5 to 30 with an interval 5 (i.e.,

t = 5,10,15,20,25,30) to test the time costs of each algorithm.
The time costs of each algorithm in our PCSC system are shown
in Table II. One can find that the time costs of each algorithm are
all linear increasing to the number of credit data items except
that of Setup and Verify. The most expensive time cost is about
30 s even the number of credit data items reaches to 30. On the
one hand, computing a secure and verifiable credit score does not
have to be real-time, and hence these time costs are still tolerable
for achieving a stronger security. On the other hand, we can seek
for more efficient HE algorithms and designing corresponding
NIZK proofs to improve the performance.

VI. CONCLUSION

Credit score is increasingly been used in a number of countries
and context, as a key determinant of one’s (credit) worth in a
credit system. To mitigate limitation of existing risk models, we
focused on privacy protection of CSC in this article. Specifically,
we designed a PCSC system and described its security require-
ments (i.e., weight confidentiality and credit confidentiality).
To the best of authors’ knowledge, this is the first such system
with formal security definitions. We then presented a concrete
construction based on Paillier encryption, with three purpose-
fully designed NIZK schemes. We also gave the security proof
of the proposal and evaluated its performance to demonstrate
feasibility.

However, the size of PIW and PED proofs increases signifi-
cantly as the number of credit data items increases. This incurs
significant storage and communication costs. Therefore, in our
future research, we intend to enhance the design by having a
constant proof size for better supporting the PCSC system.

REFERENCES

[1] Z. Wang, S. Yan, and C. Zhang, “Active learning with adaptive regulariza-
tion,” Pattern Recognit., vol. 44, no. 10/11, pp. 2375–2383, 2011.

[2] B. Gutierrez-Nieto, C. Serrano-Cinca, and J. Camon-Cala, “A credit score
system for socially responsible lending,” J. Bus. Ethics, vol. 133, no. 4,
pp. 691–701, 2016.

[3] L. Thomas, J. Crook, and D. Edelman, Credit Scoring and its Applications,
vol. 2. Philadelphia, PA, USA: SIAM, 2017.

[4] R. Zeidan, C. Boechat, and A. Fleury, “Developing a sustainability credit
score system,” J. Bus. Ethics, vol. 127, no. 2, pp. 283–296, 2015.

[5] L. Zhou, K. K. Lai, and L. Yu, “Least squares support vector machines
ensemble models for credit scoring,” Expert Syst. Appl., vol. 37, no. 1,
pp. 127–133, 2010.

[6] Y. Li, J. Gao, A. Z. Enkavi, L. Zaval, E. U. Weber, and E. J. Johnson, “Sound
credit scores and financial decisions despite cognitive aging,” Proc. Nat.
Acad. Sci. USA, vol. 112, no. 1, pp. 65–69, 2015.

[7] G. N. Masters, “Partial credit model,” in Handbook of Item Response
Theory, vol. 1. London, U.K.: Chapman & Hall, 2016, pp. 137–154.

[8] S. Y. Sohn, D. H. Kim, and J. H. Yoon, “Technology credit scoring model
with fuzzy logistic regression,” Appl. Soft Comput., vol. 43, pp. 150–158,
2016.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:11:27 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

[9] H. J. Smith, T. Dinev, and H. Xu, “Information privacy research: An
interdisciplinary review,” MIS Quart., vol. 35, no. 4, pp. 989–1015, 2011.

[10] D. Malandrino and V. Scarano, “Privacy leakage on the web: Diffusion and
countermeasures,” Comput. Netw., vol. 57, no. 14, pp. 2833–2855, 2013.

[11] Y. Li, W. Dai, Z. Ming, and M. Qiu, “Privacy protection for preventing
data over-collection in smart city,” IEEE Trans. Comput., vol. 65, no. 5,
pp. 1339–1350, May 2016.

[12] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay—A secure two-
party computation system,” in Proc. 13th Conf. USENIX Secur. Symp.,
vol. 13, no. 1, pp. 1–20, 2004.

[13] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party
computation using garbled circuits,” in Proc. 20th USENIX Secur. Symp.,
San Francisco, CA, USA, no.1, pp. 1–35, 2011.

[14] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching and
set intersection,” in Proc. Int. Conf. Theory Appl. Cryptographic Techn.,
2004, pp. 1–19.

[15] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen, “On private scalar
product computation for privacy-preserving data mining,” in Proc. 7th Int.
Conf. Inf. Secur. Cryptology., Seoul, South Korea, 2004, pp. 104–120.

[16] R. Dowsley, J. van de Graaf, D. Marques, and A. C. A. Nascimento, “A
two-party protocol with trusted initializer for computing the inner product,”
in Proc. 11th Int. Workshop Inf. Secur. Appl., Jeju Island, South Korea,
Aug. 2010 pp. 337–350.

[17] C. Gentry and D. Boneh, A Fully Homomorphic Encryption Scheme,
vol. 20. Stanford, CA, USA: Stanford Univ. Press, 2009.

[18] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully ho-
momorphic encryption over the integers,” in Proc. 29th Annu. Int. Conf.
Theory Appl. Cryptographic Techn., 2010, pp. 24–43.

[19] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of identity,” J.
Cryptology, vol. 1, no. 2, pp. 77–94, 1988.

[20] I. Damgård, “On σ-protocols,” Lecture Notes, Dept. Comput. Sci., Univ.
Aarhus, Aarhus, Denmark, 2002.

[21] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of
interactive proof systems,” SIAM J. Comput., vol. 18, no. 1, pp. 186–208,
1989.

[22] M. Blum, A. De Santis, S. Micali, and G. Persiano, “Non-interactive zero
knowledge,” Siam J. Comput., vol. 20, no. 6, pp. 1084–1118, 1991.

[23] J. Groth, R. Ostrovsky, and A. Sahai, “New techniques for noninteractive
zero-knowledge,” J. ACM, vol. 59, no. 3, 2012, Art. no. 11.

[24] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. Int. Conf. Theory Appl. Cryptographic Techn.,
Prague, Czech Republic, May. 1999 pp. 223–238.

[25] I. Damgård, M. Jurik, and J. B. Nielsen, “A generalization of Paillier’s
public-key system with applications to electronic voting,” Int. J. Inf. Secur.,
vol. 9, no. 6, pp. 371–385, 2010.

[26] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Proc. Adv. Cryptology, Santa
Barbara, CA, USA, 1986, pp. 186–194.

[27] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for
designing efficient protocols,” in Proc. 1st ACM Conf. Comput. Commun.
Secur., Fairfax, VA, USA, Nov. 1993, pp. 62–73.

[28] D. Boneh and X. Boyen, “Short signatures without random oracles,” in
Proc. Int. Conf. Theory Appl. Cryptographic Techn., 2004, pp. 56–73.

[29] J. Camenisch, R. Chaabouni, and A. Shelat, “Efficient protocols for set
membership and range proofs,” in Proc. 14th Int. Conf. Theory Appl. Cryp-
tology Inf. Secur., Melbourne, VIC, Australia, Dec. 2008, pp. 234–252.

[30] S. Ma, Y. Deng, D. He, J. Zhang, and X. Xie, “An efficient
NIZK scheme for privacy-preserving transactions over account-model
blockchain,” IEEE Trans. Dependable Secure Comput., 2017. doi:
10.1109/TDSC.2020.2969418.

[31] P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly elliptic curves
of prime order,” in Proc. 12th Int. Workshop Sel. Areas Cryptography,
Kingston, ON, Canada, Aug. 2005, pp. 319–331.

[32] C. Cachin and J. Camenisch, Eds., Advances in Cryptology—
EUROCRYPT 2004, vol. 3027. Berlin, Germany: Springer, 2004.

Chao Lin received the Ph.D. degree from the School
of Cyber Science and Engineering, Wuhan Univer-
sity, Wuhan, China, in 2020.

He is currently with the College of Mathemat-
ics and Informatics and the Fujian Provincial Key
Laboratory of Network Security and Cryptology, Fu-
jian Normal University, Fuzhou, China. His research
interests mainly include applied cryptography and
blockchain technology.

Min Luo received the Ph.D. degree in computer
science from Wuhan University, Wuhan, China, in
2003.

He is currently an Associate Professor with the
School of Cyber Science and Engineering, Wuhan
University. His research interests mainly include ap-
plied cryptography and blockchain technology.

Xinyi Huang (Member, IEEE) received the Ph.D.
degree from the School of Computer Science and
Software Engineering, University of Wollongong,
Wollongong, NSW, Australia, in 2009.

He is currently a Professor with the College of
Mathematics and Informatics, Fujian Normal Uni-
versity, Fuzhou, China, and the Co-Director of the
Fujian Provincial Key Laboratory of Network Secu-
rity and Cryptology. He has authored more than 100
research papers in refereed international conferences
and journals. His research interests include applied

cryptography and network security.
Dr. Huang is an Associate Editor for the IEEE TRANSACTIONS ON DEPEND-

ABLE AND SECURE COMPUTING. His work has been cited more than 8400 times
at Google Scholar (H-Index: 49).

Kim-Kwang Raymond Choo (Senior Member,
IEEE) received the Ph.D. degree in information secu-
rity from the Queensland University of Technology,
Brisbane, QLD, Australia, in 2006.

He currently holds the Cloud Technology Endowed
Professorship with The University of Texas at San
Antonio, San Antonio, TX, USA.

Dr. Choo is an IEEE Computer Society Distin-
guished Visitor from 2021 to 2023, included in Web
of Sciences Highly Cited Researcher in the field of
cross-field in 2020, and in 2015 he and his team won

the Digital Forensics Research Challenge organized by Germany’s University of
Erlangen-Nuremberg. He is the recipient of the 2019 IEEE Technical Committee
on Scalable Computing (TCSC) Award for Excellence in Scalable Computing
(Middle Career Researcher), the 2018 UTSA College of Business Col. Jean
Piccione and Lt. Col. Philip Piccione Endowed Research Award for Tenured
Faculty, the British Computer Society’s 2019 Wilkes Award Runner-up, the 2014
Highly Commended Award by the Australia New Zealand Policing Advisory
Agency, the Fulbright Scholarship in 2009, the 2008 Australia Day Achievement
Medallion, and the British Computer Society’s Wilkes Award in 2008. He has
also received best paper awards from the IEEE Consumer Electronics Magazine
in 2020, EURASIP Journal on Wireless Communications and Networking in
2019, IEEE TrustCom 2018, and ESORICS 2015; the Korea Information Pro-
cessing Society’s JIPS Survey Paper Award (Gold) 2019; the IEEE Blockchain
2019 Outstanding Paper Award; and the Best Student Paper awards from Inscrypt
2019 and ACISP 2005.

Debiao He (Member, IEEE) received the Ph.D. de-
gree in applied mathematics from the School of Math-
ematics and Statistics, Wuhan University, Wuhan,
China, in 2009.

He is currently a Professor with the School of Cyber
Science and Engineering, Wuhan University. He has
authored or coauthored more than 100 research papers
in refereed international journals and conferences,
such as IEEE TRANSACTIONS ON DEPENDABLE AND

SECURE COMPUTING, IEEE TRANSACTIONS ON IN-
FORMATION SECURITY AND FORENSIC, and USENIX

Security Symposium. His main research interests include cryptography and
information security, in particular, cryptographic protocols.

Dr. He was the recipient of the 2018 IEEE SYSTEMS JOURNAL Best Paper
Award and the 2019 IET Information Security Best Paper Award. His work has
been cited more than 7000 times at Google Scholar. He is in the Editorial Board
of several international journals, such as the Journal of Information Security and
Applications, Frontiers of Computer Science, and Human-Centric Computing
and Information Sciences.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:11:27 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TDSC.2020.2969418

